In this paper, the inverse and forward kinematics of a novel mobile robot that utilizes two actuated spoke wheels is presented. Intelligent Mobility Platform with Active Spoke System (IMPASS) is a wheel-leg hybrid robot that can walk in unstructured environments by stretching in or out three independently actuated spokes of each wheel. First, the unique locomotion scheme of IMPASS is introduced. Then the configuration of the robot when each of its two spoke wheels has one spoke in contact with the ground is modeled as a two-branch parallel mechanism with spherical and prismatic joints. An equivalent serial manipulator of the 2-SP mechanism with the same degrees of freedom is proposed to solve for the inverse and forward kinematic problems. The relationship between the physical limits of the stroke of the spokes (effective spoke length) and the limits of its equivalent degree of freedom is established. This approach can also be expanded to deal with the forward and inverse kinematics of other configurations which has more than two ground contact points. Several examples are used to illustrate the method. The results obtained will be used in the future research on the motion planning of IMPASS walking in unstructured environment.

This content is only available via PDF.
You do not currently have access to this content.