Quadruped walking robots need to handle high obstacles like steps that are often not kinematically reachable. We present a dynamic leap that allows a quadruped robot to put its front legs up onto a high rock or ledge, a motion we have found is critical to being able to locomote over rough terrain. The leaping motion was optimized using a simulated planar quadruped model. We present experimental results for the implementation of this optimized motion on a real quadruped robot.

This content is only available via PDF.
You do not currently have access to this content.