Endoscopes are used in medical practice to effect minimally invasive diagnostics and treatments through a natural or surgical orifice. The endoscope is a snakelike device with a two degree-of-freedom articulated tip that bends in any direction using internal cables actuated by knobs. In this paper we use a serial robot model of the tip to show that the tip motions are not decoupled with respect to the knob inputs nor do they have constant gains. Further in a geometrical analysis it is shown that the articulated tip always lies along a circle. A tip kinematic control strategy is developed based on small motions that is able to decouple the output motions from the input motions and provide a constant gain functions. This allows the surgeon to control the endoscope in an intuitive and efficient manner.

This content is only available via PDF.
You do not currently have access to this content.