The current work discusses a novel global optimization method called the Multi-Agent Normal Sampling Technique (MANST). MANST is based on systematic sampling of points around agents; each agent in MANST represents a candidate solution of the problem. All agents compete with each other for a larger share of available resources. The performance of all agents is periodically evaluated and a specific number of agents who show no promising achievements are deleted; new agents are generated in the proximity of those promising agents. This process continues until the agents converge to the global optimum. MANST is a standalone global optimization technique. It is benchmarked with six well-known test cases and the results are then compared with those obtained from Matlab™ 7.1 GA Toolbox. The test results showed that MANST outperformed Matlab™ 7.1 GA Toolbox for the benchmark problems in terms of accuracy, number of function evaluations, and CPU time.

This content is only available via PDF.
You do not currently have access to this content.