There are two commonly used reliability analysis methods of analytical methods: linear approximation - First Order Reliability Method (FORM), and quadratic approximation - Second Order Reliability Method (SORM), of the performance functions. The reliability analysis using FORM could be acceptable for mildly nonlinear performance functions, whereas the reliability analysis using SORM is usually necessary for highly nonlinear performance functions of multi-variables. Even though the reliability analysis using SORM may be accurate, it is not desirable to use SORM for probability of failure calculation since SORM requires the second-order sensitivities. Moreover, the SORM-based inverse reliability analysis is very difficult to develop. This paper proposes a method that can be used for multi-dimensional highly nonlinear systems to yield very accurate probability of failure calculation without requiring the second order sensitivities. For this purpose, the univariate dimension reduction method (DRM) is used. A three-step computational process is proposed to carry out the inverse reliability analysis: constraint shift, reliability index (β) update, and the most probable point (MPP) approximation method. Using the three steps, a new DRM-based MPP is obtained, which computes the probability of failure of the performance function more accurately than FORM and more efficiently than SORM.

This content is only available via PDF.
You do not currently have access to this content.