A technique for center manifold reduction of nonlinear delay differential equations (DDEs) with time-periodic coefficients is presented. Perturbation expansion converts the nonlinear response problem into solutions of a series of non-homogenous linear ordinary differential equations (ODEs) with time periodic coefficients. One set of linear non-homogenous ODEs is solved for each power of the perturbation parameter. Each ODE is solved by a Chebyshev spectral collocation method. Thus we compute a finite approximation to the nonlinear infinite-dimensional map for the DDE. Center manifold reduction on the map is then carried out. Center manifold reduction is illustrated via a single inverted pendulum including both a periodic retarded follower force and a nonlinear restoring force. In this example, the amplitude of the limit cycle associated with a flip bifurcation is found analytically and compared to that obtained from direct numerical simulation.

This content is only available via PDF.
You do not currently have access to this content.