An accurate description of the tire characteristics is very important for vehicle dynamic analysis. However, the characteristics of a tire are very complex, and it is not easy to develop the analytical model of tire force. It is also well known that the actual tire force is greatly affected by the suspension properties. The geometry of suspension arms determines the wheel alignment specifications such as toe and camber angle, and the stiffness and damping characteristics of suspension elements influences the vertical load of each wheel. In order to investigate the suspension properties upon the tire force characteristics, the authors have developed an original tire and suspension testing machine with 6-DOF motion platform. This system is equipped with a tire, a suspension system of a passenger car, a roller conveyer, and a 6-DOF motion platform. The developed system can evaluate the relationship between the suspension system and the tire, whereas the conventional tire testing machine measures the individual characteristics of a tire. In this paper, we report some test results with developed testing system. First, the lateral force characteristics of a tire in steady-state cornering condition were evaluated with this system, and the compliance steer characteristics of a suspension caused by the lateral force were also investigated at the same time. Next, the tire force characteristics were evaluated under the varying load condition. The random vertical displacement generated by the 6-DOF motion platform was applied to the tire, and the vertical and lateral force were observed. It was shown that the developed system can realize the evaluation of tire and suspension characteristics under various conditions.

This content is only available via PDF.
You do not currently have access to this content.