The kinematic representations of general open-loop chains in many robotic applications are based on the Denavit-Hartenberg (DH) notation. However, when the DH representation is used for kinematic modeling, the relative joint constraints cannot be described explicitly using the common formulation methods. In this paper, we propose a new formulation of solving a system of differential-algebraic equations (DAEs) where the method of Lagrange multipliers is incorporated into the optimization problem for optimal motion planning of redundant systems. In particular, a set of fictitious joints is modeled to solve for the joint constraint forces and moments, as well as the optimal dynamic motion and the required actuator torques, of redundant manipulators described in DH representation. The proposed method is formulated within the framework of our earlier study on the generation of load-effective optimal dynamic motions of redundant manipulators that guarantee successful execution of given tasks, in which the Lagrangian dynamics for general external loads are incorporated. Some example tasks of a simple planar manipulator and a high-degree-of-freedom digital human model are illustrated, and the results show accurate calculation of joint constraint loads without altering the original planned motion. The proposed optimization formulation is equivalent to solving DAEs without integration.
Skip Nav Destination
ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
September 4–7, 2007
Las Vegas, Nevada, USA
Conference Sponsors:
- Design Engineering Division and Computers and Information in Engineering Division
ISBN:
0-7918-4806-X
PROCEEDINGS PAPER
A New Method for Determining Joint Constraint Forces and Moments During Optimal Dynamic Motion of Redundant Manipulators
Jingzhou Yang,
Jingzhou Yang
University of Iowa, Iowa City, IA
Search for other works by this author on:
Karim Abdel-Malek
Karim Abdel-Malek
University of Iowa, Iowa City, IA
Search for other works by this author on:
Joo H. Kim
University of Iowa, Iowa City, IA
Jingzhou Yang
University of Iowa, Iowa City, IA
Karim Abdel-Malek
University of Iowa, Iowa City, IA
Paper No:
DETC2007-35677, pp. 161-172; 12 pages
Published Online:
May 20, 2009
Citation
Kim, JH, Yang, J, & Abdel-Malek, K. "A New Method for Determining Joint Constraint Forces and Moments During Optimal Dynamic Motion of Redundant Manipulators." Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5: 6th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B, and C. Las Vegas, Nevada, USA. September 4–7, 2007. pp. 161-172. ASME. https://doi.org/10.1115/DETC2007-35677
Download citation file:
10
Views
Related Proceedings Papers
Related Articles
Control of Redundant Mechanical Systems Under Equality and Inequality Constraints on Both Input and Constraint Forces
J. Comput. Nonlinear Dynam (July,2011)
Serial Metamorphic Manipulator Dynamics Formulation Implementing Screw Theory Tools
Letters Dyn. Sys. Control (October,2024)
Overall Motion Planning for Kinematically Redundant Parallel Manipulators
J. Mechanisms Robotics (May,2012)
Related Chapters
Manipulability-Maximizing SMP Scheme
Robot Manipulator Redundancy Resolution
Feedback-Aided Minimum Joint Motion
Robot Manipulator Redundancy Resolution
Time-Varying Coefficient Aided MM Scheme
Robot Manipulator Redundancy Resolution