Recent legislative and social pressures have driven manufacturers to consider effective part reuse and material recycling at the end of product life at the design stage. One of the key considerations is to design and use joints that can disengage with minimum labor, part damage, and material contamination. This paper presents a unified method to design high-stiffness reversible locator-snap system that can disengage non-destructively with localized heat, and its application to external product enclosures of electrical appliances. The design problem is posed as an optimization problem to find the orientations, numbers, and locations of locators and snaps, and the number, locations and sizes of heating areas, which realize the release of snaps with minimum heating area and maximum stiffness, while satisfying any motion and structural requirements. Screw Theory is utilized to pre-calculate a set of feasible orientations of locators and snaps, which are examined during optimization. The optimization problem is solved using Multi Objective Genetic Algorithm (MOGA) coupled with structural and thermal FEA. The method is applied to two-piece enclosure of a DVD player with a T-shaped mating line. The resulting Pareto-optimal solutions exhibit alternative designs with different trade-offs between structural stiffness during snap engagement and area of heating for snap disengagement. Some results require the heating of two areas at the same time, demonstrating the idea of a lock-n-key.

This content is only available via PDF.
You do not currently have access to this content.