Researchers have demonstrated that imprint lithography techniques have remarkable replication resolution and can pattern sub-5nm structures. However, a fully capable lithography approach needs to address several challenges in order to be useful in nano-manufacturing applications. This paper presents the key technical challenges as well as the progress achieved to-date in these areas. A promising nanoimprint technique that has been previously discussed in the literature is a UV curing technique known as Step and Flash Imprint Lithography (S-FIL). In this article, a variant of the S-FIL process — known as drop-on-demand UV nano-imprint process — that addresses many of the key manufacturing challenges is discussed. This process has the ability to address challenges such as process repeatability in residual layer control, low defectivity, ability to fully automate the lithography process, nano-resolution alignment, and the ability to handle pattern density variations. All nano-imprint lithography techniques essentially replicate the patterns present in a master mold (or template). One of the demanding challenges is the creation of this template. Patterning, metrology, inspection, and defect repair issues relevant to template fabrication are discussed. Finally, with a brief discussion of near-term practical applications in the areas of photonics, magnetic storage, and CMOS devices is presented.

This content is only available via PDF.
You do not currently have access to this content.