This paper discusses the development of an improved design for a tire-coupled quarter-vehicle testing rig. The use of indoor-based simulation tools has become a mainstay in vehicle testing for the automotive and motorsports industries. Testing on a quarter-vehicle rig provides a cost effective means for making accurate and repeatable measurements that enables the user to perform a relatively large number of tests in a short amount of time. A review of current quarter-vehicle test platforms, both commercially available and in academic research labs, indicated that many desired functional requirements were not available. The goal of this effort was to develop a new quarter-vehicle rig with expanded capabilities that are not simultaneously present in the current state-of-the-art. The desired functional requirements are: accommodation of a wide range of actual vehicle suspension components including the tire and wheel, weight transfer due to braking and acceleration, aerodynamic forces, and vehicle roll. The test rig was constructed and tested using a Porsche 996 suspension. The suspension dynamics were characterized by fitting the parameters of a linear dynamic model to experimental response data from the rig. The design and performance of this new quarter-vehicle test rig is shown to be a cost effective solution for meeting the broad range of functional requirements.

This content is only available via PDF.
You do not currently have access to this content.