Hybrid vehicle technology is beginning to make a significant mark in the automotive industry, most notably by the Toyota Prius THS-II and its one-mode technology, but also by two-mode architectures recently introduced. GM-Allison, Renault, and the Timken Company have attempted to capitalize on the advantages over simpler series and parallel architectures that the series-parallel configuration confers on the Prius while also improving the design by allowing the powertrain configuration to physically shift and operate in two different modes depending on the driving load. This work provides an overview of the state-of-the-art in two-mode hybrid vehicle architectures, and demonstrates the performance of this technology in comparison to the market-leading Toyota Prius one-mode hybrid vehicle technology and conventional ICE technology. Simulations in the NREL ADVISOR® software compare the performances of the one- and two-mode architectures against a parallel-full design and the ICE baseline for four different drive cycles and a vehicle with varying weight that simulates a commercial vehicle application. A configuration that is a variation of those designed by GM-Allison was chosen as the representative of the two-mode architectures. The performance metric was fuel economy. The fuel economy was measured over the course of the drive cycles: (1) Urban Dynamometer Driving Schedule for Heavy Duty Vehicles (UDDSHDV); (2) New York City Truck (NYCT); (3) City-Suburban Heavy Vehicle Route (CSHVR); and (4) Highway Fuel Economy Test (HWFET). The vehicle model uses a module developed in-house for a Kenworth T400 truck with a payload that varies from empty to completely full. The results demonstrate that the two-mode architecture provides significantly improved performance to that of the conventional non-hybrid design and comparable performance to that of the parallel-full hybrid design. Furthermore, the one-mode design is shown to be sub-optimal for this vehicle type. Development and optimization of the control strategy, which is the direction of the current research, should allow for additional improvement in fuel economy; optimization of vehicular components could result in improvements in acceleration ability, gradeability, and top speed performance, which lags behind the performance capabilities of the conventional powertrain vehicle in these metrics. The study confirms that two-mode architecture presents unique advantages for constantly changing driving cycles and vehicle payloads and represents the future of hybrid vehicle technology.
Skip Nav Destination
Close
Sign In or Register for Account
ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
September 4–7, 2007
Las Vegas, Nevada, USA
Conference Sponsors:
- Design Engineering Division and Computers and Information in Engineering Division
ISBN:
0-7918-4804-3
PROCEEDINGS PAPER
Review, Modelling and Simulation of Two-Mode Hybrid Vehicle Architecture
Jeffrey D. Wishart
,
Jeffrey D. Wishart
University of Victoria, Victoria, BC, Canada
Search for other works by this author on:
Yuliang Zhou
,
Yuliang Zhou
University of Victoria, Victoria, BC, Canada
Search for other works by this author on:
Zuomin Dong
Zuomin Dong
University of Victoria, Victoria, BC, Canada
Search for other works by this author on:
Jeffrey D. Wishart
University of Victoria, Victoria, BC, Canada
Yuliang Zhou
University of Victoria, Victoria, BC, Canada
Zuomin Dong
University of Victoria, Victoria, BC, Canada
Paper No:
DETC2007-35541, pp. 1091-1112; 22 pages
Published Online:
May 20, 2009
Citation
Wishart, JD, Zhou, Y, & Dong, Z. "Review, Modelling and Simulation of Two-Mode Hybrid Vehicle Architecture." Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 3: 19th International Conference on Design Theory and Methodology; 1st International Conference on Micro- and Nanosystems; and 9th International Conference on Advanced Vehicle Tire Technologies, Parts A and B. Las Vegas, Nevada, USA. September 4–7, 2007. pp. 1091-1112. ASME. https://doi.org/10.1115/DETC2007-35541
Download citation file:
- Ris (Zotero)
- Reference Manager
- EasyBib
- Bookends
- Mendeley
- Papers
- EndNote
- RefWorks
- BibTex
- ProCite
- Medlars
Close
Sign In
9
Views
0
Citations
Related Proceedings Papers
Related Articles
Emissions From Heavy-Duty Trucks Converted to CNG
J. Eng. Gas Turbines Power (July,1992)
Robustification Through Minimax Dynamic Programming and Its Implication for Hybrid Vehicle Energy Management Strategies
J. Dyn. Sys., Meas., Control (January,0001)
Modeling of a Hydraulic Energy Regeneration System: Part I—Analytical Treatment
J. Dyn. Sys., Meas., Control (March,1992)
Related Chapters
Application of Traffic Simulation to Transverse Section Types Selection of Urban Expressway
International Conference on Computer Technology and Development, 3rd (ICCTD 2011)
Comparing Fault-Tolerant Architecture for Automotive Safety Applications in Light of IEC 61508
International Conference on Computer Technology and Development, 3rd (ICCTD 2011)
Why Do We Avoid Conflict?
Conflict Resolution: Concepts and Practice (The Technical Manager's Survival Guides)