It has been a common practice that serpentine cooling passages are used in gas turbine blade to enhance the cooling performance. Insufficient cooled blades are subject to oxidation, to cause creep rupture, and even to cause melting of the material. To control and improve temperature of the blade, we have to have a better understanding of flow behavior and heat transfer inside strongly curved U-bends. The interactions between secondary flows and separation lead to very complex flow patterns. To accurately simulate these flows and heat transfer, both refined turbulence models and higher-order numerical schemes are indispensable for turbine designers to improve the cooling performance. Previous studies have shown that the flow and heat transfer features through curved bends, even with moderate curvature, cannot be accurately simulated. It is the conventional belief and practice that the usage of a proper turbulence model and a reliable numerical method for achieving accurate computations. The three-dimensional turbulent flows and heat transfer inside a sharp U-bend are numerically studied by using a non-linear low-Reynolds number (low-Re) k-ω model in which the cubic terms are included to represent the effects of extra strain-rates such as streamline curvature and three-dimensionality on both turbulence normal and shear stresses. The finite volume difference method incorporated with the higher-order bounded interpolation scheme has been employed in the present study. For the purpose of comparison, the predictions with the linear low-Reynolds number k-ω model were also performed. The success of the present prediction indicates that the model can be applied to the flow and heat transfer through a coolant passage in an actual gas turbine blade. It is shown that the present non-linear model produces satisfactory predictions of the flow development inside the sharp U-bend comparing with linear Launder-Sharma model. In the present study, three turbulence models are used to predict Nysselt number distribution as well.
Skip Nav Destination
ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
September 4–7, 2007
Las Vegas, Nevada, USA
Conference Sponsors:
- Design Engineering Division and Computers and Information in Engineering Division
ISBN:
0-7918-4803-5
PROCEEDINGS PAPER
A Computational Study on Turbulent Flow and Heat Transfer in a Strongly Curved RC/D = 0.65 Turbine Blade Cooling Passage
Jose Martinez Lucci,
Jose Martinez Lucci
University of Wisconsin at Milwaukee, Milwaukee, WI
Search for other works by this author on:
R. S. Amano,
R. S. Amano
University of Wisconsin at Milwaukee, Milwaukee, WI
Search for other works by this author on:
Krishna S. Guntur
Krishna S. Guntur
University of Wisconsin at Milwaukee, Milwaukee, WI
Search for other works by this author on:
Jose Martinez Lucci
University of Wisconsin at Milwaukee, Milwaukee, WI
R. S. Amano
University of Wisconsin at Milwaukee, Milwaukee, WI
Krishna S. Guntur
University of Wisconsin at Milwaukee, Milwaukee, WI
Paper No:
DETC2007-35143, pp. 695-706; 12 pages
Published Online:
May 20, 2009
Citation
Martinez Lucci, J, Amano, RS, & Guntur, KS. "A Computational Study on Turbulent Flow and Heat Transfer in a Strongly Curved RC/D = 0.65 Turbine Blade Cooling Passage." Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 2: 27th Computers and Information in Engineering Conference, Parts A and B. Las Vegas, Nevada, USA. September 4–7, 2007. pp. 695-706. ASME. https://doi.org/10.1115/DETC2007-35143
Download citation file:
5
Views
Related Proceedings Papers
Related Articles
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Part III: TIP Cooling
J. Turbomach (January,2009)
Improved Performance Rhenium Containing Single Crystal Alloy Turbine Blades Utilizing PPM Levels of the Highly Reactive Elements Lanthanum and Yttrium
J. Eng. Gas Turbines Power (January,1999)
Film Cooling From a Row of Holes Supplemented With Antivortex Holes
J. Turbomach (April,2009)
Related Chapters
Numerical Study on Dynamic Discharging Performance of Packed Bed Using Spherical Capsules Containing N-Tetradecane
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Numerical Study on Dynamic Charging Performance of Packed Bed Using Spherical Capsules Containing N-Tetradecane
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential