This paper presents a numerical study of evaporation characteristics of liquid fuel spray in porous media. A two-energy equation model was employed to predict solid and gas phase temperatures. Governing equations were solved on a two-dimensional axisymmetric computational domain of 2.15 × 20 cm. An air-blast atomizer model was used to inject kerosene fuel spray on to the porous medium. Combustion in porous media was simulated by using a uniform volumetric heat source in the porous region. Numerical results were obtained with a commercial code Fluent 6.0. For a heat feedback rate of 1% of average heat input, the porous medium attained a temperature of 465 K. This data agreed well with experimental data obtained by infrared imaging. With an increase in heat feedback rate, the porous medium temperature also increased. Surface temperature distribution in porous media for different heat feedback rates was predicted. Results indicate that the transverse distribution was uniform within 1.5% of the mean value. Droplet diameter was smaller in spray core upstream of porous medium and increased radially due to the swirling action imparted to the atomizing air. Transverse vapor concentration results downstream of porous medium show that the distribution was uniform within 5% of the mean value, which demonstrates that porous medium uniformly distributes the fuel vapor-air mixture. The spatially homogeneous reactant mixture is important to achieve good combustion, reduce pollutant formation, and minimize instabilities in practical combustors. Effects of equivalence ratio and flame temperature on transverse vapor concentration profiles were also numerically studied. Porous media combustors could be used in gas turbine and industrial burner applications to reduce pollutant emissions.

This content is only available via PDF.
You do not currently have access to this content.