Energy dissipation in mechanical joints occurs as a result of micro-slip motion between contacting rough surfaces. An account of this phenomenon is especially challenging due to the vast differences in the length and time scale differences between the macro-mechanical structure and the micron-scale events at the joint interface. This paper considers the contact between two nominally flat surfaces containing micron-scale roughness. The rough surface interaction is viewed as a multi-sphere elastic interaction subject to a periodic tangential force. It combines the Mindlin’s formulation [1, 2] for the elastic interaction of two spheres with the Greenwood and Williamson’s [3] statistical approach for the contact of two nominally flat rough surfaces so as to develop a model for multi-sphere problem in which sphere radii, contact load and the number of spheres in contact can only be known in a statistical sense and not deterministically.

This content is only available via PDF.
You do not currently have access to this content.