The present work focuses on the dynamic characterization of oil-free wire mesh dampers. The research was focused on determining nonlinear stiffness and damping coefficients while varying the excitation amplitude, excitation frequency, and static eccentricity. Force coefficients were extracted using a forced response method (FRM) and also a transient vibration method. Due to the nonlinearity of the dampers, controlled amplitude tests were required for the forced excitation method, whereas the transient response was analyzed using a Hilbert Transform procedure. The testing using both methods showed that eccentricity has minimal influence on force coefficients, whereas increasing excitation amplitude and frequency yield decreasing stiffness and damping trends. In addition to the parameter identification tests, a rotating test was performed demonstrating high-speed damping capability of the oil-free wire mesh dampers to 40,000 rpm, which was also simulated using an nonlinear rotordynamic response to imbalance analysis.

This content is only available via PDF.
You do not currently have access to this content.