Operating of rotating machinery with a rotor crack is a risk condition, since the rotor crack grows gradually and may fail causing a catastrophic accident. Therefore, it is very important to detect the occurrence of a crack on rotating machinery in early stages. The authors have used the simple two-degree-of-freedom cracked rotor model, and investigated the usage of periodic excitation for the detection of the rotor crack. This paper constructs a finite element rotor model with breathing crack element, and performs the numerical investigation. The dynamic responses of a cracked rotor system under applied periodical external excitation are investigated. The occurrences of various kinds of nonlinear sub-resonances are observed numerically, and the dynamical characteristics of these sub-resonances are clarified. The influences of the position and depth of the crack are clarified. Furthermore, these sub-resonances due to crack are observed in the experiment. This result made us enable to detect the occurrence of a rotor crack.

This content is only available via PDF.
You do not currently have access to this content.