Active magnetic bearing (AMB) becomes to be widely used in various kinds of rotating machinery. However, as the magnetic force is nonlinear, nonlinear phenomena may occur when the rotating speed becomes higher and delay of control force increases. In this paper, the magnetic force is modeled by considering both the second order delay of the electric current and the first order delay of the magnetic flux, and the AMB force is represented by a power series function of the electric current and shaft displacement. The nonlinear theoretical analysis of the vertical rigid rotor supported by AMB is demonstrated. The effects of the delays and other AMB parameters on the nonlinear phenomena are clarified theoretically and experimentally.

This content is only available via PDF.
You do not currently have access to this content.