As sculptured surfaces are widely used in mechanical design, machining sculptured surface parts accurately is highly demanded in industry; however, it is quite challenging to meet their demand. Due to the geometric complexity of these surfaces, the tool-surface geometric mismatch always causes machining errors when the tool cuts along the tool paths. To prevent surface gouging, where the machining error is greater than the part tolerance, state-of-the-art CAM software usually determines cutter contact (CC) points on the tool paths first, and then simulates the machining to check the errors caused by this tool-surface mismatch. If surface gouging occurs, the CC points are adjusted using the CAM software. But this established method is quite time consuming and sometimes ineffective. To overcome these problems, a new system, based on the accurate predictions of machining errors, is proposed in this research paper for the optimization of CC points on the tool paths. First, two established CC point generation methods, the chordal deviation method and the circular arc approximation method, are introduced; and their limitations are addressed. Second, a sensitivity study of the machining errors with respect to the cutting tools is conducted. Then a system implementing the generic, geometric approach to accurate machining-error predictions is proposed to optimize CC points on the tool paths. Finally, this CC point optimization system is applied to two practical parts to demonstrate its advantages over the two established methods. This proposed work provides a profound understanding of the machining errors caused by the tool-surface mismatch and contributes to tool path planning for 3-axis CNC milling of sculptured surface parts.

This content is only available via PDF.
You do not currently have access to this content.