Chemical Vapor Deposition (CVD) process is simulated and optimized for the deposition of a thin film of silicon from silane. The key focus is on the rate of deposition and on the quality of the thin film produced. The intended application dictates the level of quality need for the film. Proper control of the governing transport processes results in large area film thickness and composition uniformity. A vertical impinging CVD reactor is considered. The goal is to optimize the CVD system. The effect of important design parameters and operating conditions are studied using numerical simulations. Then Compromise Response Surface Method (CRSM) is used to model the process over a range of susceptor temperature and inlet velocity of the reaction gases. The resulting response surface is used to optimize the CVD system.

This content is only available via PDF.
You do not currently have access to this content.