This paper investigates the problem of defining a consistent kinetostatic performance index for symmetric planar 3-DOF parallel manipulators. The condition number of the Jacobian matrix is known to be an interesting index. But since the Jacobian matrix is dimensionally inhomogeneous, a normalizing length must be used. This paper proposes two distinct kinetostatic indices. The first one is defined as the reciprocal of the condition number of the Jacobian matrix normalized with a convenient characteristic length. The second index is defined by a geometric interpretation of the “distance” to singularity. The two indices are compared and applied to the kinematic inversion in the presence of redundancy.

This content is only available via PDF.
You do not currently have access to this content.