Lightly damped poles and zeros in the response of flexure-based servomechanisms often limit their dynamic performance. In this paper, we measure the frequency response of a single-and a double-parallelogram flexure stage coupled to low-density, low-wave-speed foams in various configurations, and find that addition of the foam yields relatively high damping of in-plane, out-of-plane, and higher-order resonances. At frequencies high enough for waves to propagate into the foam, strong interactions between the foam and flexure structure occur, giving rise to a great deal of damping. This is a promising method for improvement of the dynamic performance of positioning and constraint systems that employ flexures.
Volume Subject Area:
29th Mechanisms and Robotics Conference
This content is only available via PDF.
Copyright © 2005
by ASME
You do not currently have access to this content.