Perturbed rotations of a rigid body close to the regular precession in the Lagrangian case under the action of a restoring moment depending on slow time and nutation angle, as well as a perturbing moment slowly varying with time, are studied. The body is assumed to spin rapidly, and the restoring and perturbing moments are assumed to be small with a certain hierarchy of smallness of the components. A first approximation averaged system of equations of motion for an essentially nonlinear two-frequency system is obtained in the nonresonance case. Examples of motion of a body under the action of particular restoring, perturbing, and control moments of force are considered.

This content is only available via PDF.
You do not currently have access to this content.