This paper presents an algorithm for the efficient numerical analysis and simulation of a category of contact/impact problems in multi-rigid-body dynamic systems with tree topologies. The algorithm can accommodate the jumps in structure which occur in the equations of motion of general multi-rigid-body systems due to a contact/impact event between bodies, or due to the locking of joints as long as the resulting system is a tree topology. The presented method uses a generalized momentum balance approach to determine the velocity jumps which take place across impacts in such multibody dynamic systems where event constraint forces are of the “non-working” category. The presented method does not suffer from the performance (speed) penalty encountered by most other momentum balance methods given its O(n) overall cost, and exact direct embedded consideration of all the constraints. Due to these characteristics, the presented algorithm offers superior computing performance relative to other methods in situations involving both large n and potentially many unilateral constraints.

This content is only available via PDF.
You do not currently have access to this content.