This paper is concerned with analysis of dynamic behavior of an Euler-Bernoulli beam resting on an elastic foundation. The beam is assumed to be subjected to a uniformly distributed lateral static load, have an initial quarter-sine shape deflection. At one end, the beam is assumed to be restrained by a pin, while at the other end, the beam is assumed to be restrained by a torsional and a translational linear spring. The beam is modeled by a nonlinear partial differential equation where the nonlinearity enters the governing equation through the beam axial force. In the static case, because of a unique feature of governing equation, the analysis was carried out using the theory of linear differential equations, but takes into account the effect of actual deflection on the induced axial thrust. In the dynamic case, stability analysis of the beam is carried out by calculating the nonlinear frequencies of free vibration of the beam about its static equilibrium configuration. The assumed mode method is used to discretize and find an equivalent nonlinear initial value problem. Then the harmonic balance is used to obtain an approximate solution to the nonlinear oscillator described by the equivalent initial value problem. The analyses of results were carried out for a selected range of values of the system parameters: foundation elastic stiffness, lateral load, and maximum beam edge deflection. In the static case the results are presented as characteristic curves showing the variation of the beam static deflection and associated bending moment distribution with each of the above system parameters. In the dynamic case, the presented characteristic curves show the variation of the nonlinear natural frequency corresponding to the first and the second modes over a range of each of the above system parameters.

This content is only available via PDF.
You do not currently have access to this content.