A mechanism is a device transmits motion in a predetermined manner in order to accomplish specific objectives. Mechanism design can be divided into three steps: type synthesis, number synthesis and dimensional synthesis, where the number synthesis is also called topological synthesis. In this paper, a new approach for topological synthesis and dimensional synthesis of linkage mechanism design with pin joints is presented. This approach is based on the discrete element approach which always provides clear definitions of number of linkages and joints. In order to extend its applications beyond the compliant mechanism, a novel analysis method based on the principle of minimum potential energy for linkage topology optimization is employed. Unlike the traditional FEM based approaches, this novel analysis method can be applied to multiple joint linkage designs directly. Genetic Algorithm is chosen as the optimizer. Finally, a few design examples from the proposed method are presented.

This content is only available via PDF.
You do not currently have access to this content.