Through the use of generalized spherical harmonic basis functions a spectral representation is used to model the microstructure of cubic materials. This model is then linked to the macroscopic elastic properties of materials with Cubic Triclinic and Cubic Axial-symmetric symmetry. The influence that elastic anisotropy has on the fatigue response of the material is then quantified. This is accomplished through using the effective elastic stiffness tensor in the computation of the crack extension force, G. The resulting material model and macroscopic property calculations are the foundation for a software package which provides an interface to the microstructure. The Microstructure Sensitive Design interface (MDSi) enables interaction with the material design process and provides tools needed to incorporate material parameters with traditional design, optimization, and analysis software. The microstructure of the material can then be optimized concurrently other engineering models to increase the overall design space. The influence of microstructure on the performance of a spinning disc is explored. The additional design space afforded by inclusion of the material parameters show that for both Cubic Triclinic and Cubic Axial-symmetric material symmetry conditions G can be reduced by more than an order of magnitude. For the Cubic Axial-symmetric condition a Cube <001> fiber texture and a <111> fiber texture are identified as the best performing orientation distributions.

This content is only available via PDF.
You do not currently have access to this content.