This work explains the development of an integrated modeler, which is applied in the design-to-manufacturing stages of manufacturing processes namely machining, sheet metal processing and forging. Its system architecture is broadly divided into four modules namely, Feature Based Design (FBD), Virtual Factory Environment (VFE), Process Based Feature Mapping (PBFM) and Process Planning (PP). Feature based design is used for the design, modeling, synthesis, representation and validation of the components for manufacturing applications. New set of features namely integrated features are pre-defined as feature templates and instanced to get / derive the information required for the design-to-manufacturing stages of the components. VFE defines the factory, which provides the database for operations, machines, cutting tools, work pieces etc. The knowledge base of the developed system maps validated features of the component into operation sets in the first phase of the PBFM. Each operation in the operation sets can be executed using different machines and tools in a factory. All these possible choices are obtained in the second phase of PBFM. Genetic algorithm is used to find the optimal sequence of operations, machines and tools for different criteria in the process planning stage. This paper explains the developed system with case studies.

This content is only available via PDF.
You do not currently have access to this content.