In order to prevent machine tool feed slide system from transient vibrations during operation, machine tool designers usually adopt some typical design solutions; box-in-box typed feed slides, optimizing moving body for minimum weight and dynamic compliance, and so on. Despite all efforts for optimizing design, a feed drive system may experience severe transient vibrations during high-speed operation if its feed-rate control is not suitable. A rough feed-rate curve having discontinuity in its acceleration profile causes serious vibrations in the feed slides system. This paper presents a feed-rate optimization of a ball screw driven machine tool feed slide system for its minimum vibrations. A ball screw feed drive system was mathematically modeled as a 6-degree-of-freedom lumped parameter model. Then, a feed-rate optimization of the system was carried out for minimum vibrations. The main idea of the feed-rate optimization is to find out the most appropriate smooth acceleration profile having jerk continuity. A genetic algorithm, G.A., was used in this feed rate optimization.

This content is only available via PDF.
You do not currently have access to this content.