In this research we describe a computer-aided approach to geometric tolerance analysis for assemblies and mechanisms. This new tolerance analysis method is based on the “generate-and-test” approach. A series of as-manufactured component models are generated within a NURBS-based solid modeling environment. These models reflect errors in component geometry that are characteristic of the manufacturing processes used to produce the components. The effects of different manufacturing process errors on product function is tested by simulating the assembly of these imperfect-form component models and measuring geometric attributes of the assembly that correspond to product functionality. A tolerance analysis model is constructed by generating-and-testing a sequence of component variants that represent a range of manufacturing process capabilities. The generate-and-test approach to tolerance analysis is demonstrated using a case study that is based on a high-speed stapling mechanism. As-manufactured models that correspond to two different levels of manufacturing precision are generated and assembly between groups of components with different precision levels is simulated. Misalignment angles that correspond to functionality of the stapling mechanism are measured at the end of each simulation. The results of these simulations are used to build a tolerance analysis model and to select a set of geometric form and orientation tolerances for the mechanism components. It is found that this generate-and-test approach yields insight into the interactions between individual surface tolerances that would not be gained using more traditional tolerance analysis methods.

This content is only available via PDF.
You do not currently have access to this content.