An engineer presented with a design challenge often creates a symmetric solution. For instance, consider a table (front-back and left-right symmetry), a car (left and right symmetry), a bridge (front-back and left-right symmetry), or the space shuttle (left-right) symmetry. These examples may not be 100% symmetric, but their overriding features are remarkably similar. The reasons for the design of symmetric structures is not always clear. In some cases, like the table, symmetry may be a tradition. Similarly, the symmetry may be for aesthetic reasons. However in automated design algorithms, especially stochastic techniques, the output is often largely asymmetric, One reason for this is that fitness functions are not rewarded for symmetry. A possible resolution to this is to add a reward function for symmetry. Unfortunately, this approach is computationally intractable as well as arbitrary. In this paper a Genetic Algorithm based method is presented that rewards re-use of parts. The method is applied to a simple, idealized situation as well as to real design case. The results show that in some situations, symmetry naturally emerges from the synthesis, but that it does not provide clear performance advantages over asymmetric configurations.

This content is only available via PDF.
You do not currently have access to this content.