Automotive brake squeal which is generated during brake application has become a major concern in automotive industry. Warranty costs for brake noise have been greatly increasing in recent years. Brake noise and vibration control are important for the improvement of vehicle quietness and passenger comfort. In this work, the mode coupling instability mechanism is discussed, and a method to estimate the critical value of friction coefficient is presented to predict the onset of brake squeal. A modal expansion method is developed to calculate eigenvalue and eigenvector sensitivities. Different types of mode couplings and their relationships with squeal are discussed. A reduced-order characteristic equation method based on the statically coupled eigenvalues and their derivatives is presented to estimate the critical value of friction coefficient. The significance of this method is that the critical value of friction coefficient can be predicted accurately without the need for a full complex eigenvalue analysis, making it possible to determine the sensitivity of system stability with respect to design parameters directly.

This content is only available via PDF.
You do not currently have access to this content.