Traditionally, the cantilever modal shape of liquid-filled tanks has been considered as the most critical mode. However, recent research has demonstrated that natural frequencies associated with some circumferential modes might be close to the frequency of earthquake excitation. This can lead to a resonance phenomenon, and consequently failure of the tanks. In this paper, we perform Natural Frequency Analysis of fluid-filled tanks, using finite element analysis. Modeling and solution employ ADINA potential-based flow elements, which require the assumption of inviscid, irrotational and incompressible flow. The problem is solved for different geometries and water levels of tanks; the results are compared with the current results in the literature and the difference is demonstrated.

This content is only available via PDF.
You do not currently have access to this content.