This paper presents a finite element approach to analyze the “boom” noise for a compact tractor cabin. The tractor cabin is initially designed to have a structure made up of steel beams and aluminum panels, as well as PMAA panels in windshield, backlight and windows. Cavity acoustic modes of the cab are evaluated and the acoustic resonant frequencies are identified. The study on the structural-borne noise from the cabin structural vibration generated by the engine of the vehicle is performed. A coupled-field finite element model, counting the interactions between the air fluid inside the cabin compartment and the cabin exterior structure, is presented for investigating the structural-borne noise in a low frequency range of 20 Hz to 80 Hz. This range has shown strong boom effects. The interior noise level at driver’s right ear position is investigated. The peak noise levels at the position are determined. The effects of additional stiffeners and damping layers on the boom noise are also investigated.

This content is only available via PDF.
You do not currently have access to this content.