We study the nonlinear multi-mode dynamics of a microbeam for noncontact atomic force microscopy in ultra-high vacuum. A boundary-value problem that includes a coupled linear thermo- and viscoelastic field with a localized nonlinear atomic interaction force, augmented by the linearized heat equation, is reduced to a modal dynamical system via Galerkin’s method. An equivalent linear thermoelastic quality factor is obtained and compared with a closed form solution. A numerically obtained escape curve defines valid operating parameters for low damping conditions. Primary, secondary and coupled internal resonances of a three-mode system are examined to reveal a rich bifurcation structure.

This content is only available via PDF.
You do not currently have access to this content.