The vibration suppression efficiency of so-called shunted piezoelectric systems is decisively influenced by the number, shape, dimension, and position of the implemented piezoelectric ceramic elements. This paper presents a procedure based on evolutionary algorithms for optimum placement of piezoelectric ceramic modules on real-world, highly constrained lightweight structures. The optimization loop includes the CAD software CATIA V5, the FE package ANSYS and DynOPS, a proprietary software tool able to connect the Evolving Object library with any simulation software that can be started in batch-mode. A user-defined piezoelectric shell element is integrated into ANSYS 8.1. Modal generalized electromechanical coupling coefficients are used as optimization objective and constraints. Position, dimension and shape of commercial, customized and free-form patches are determined for optimum multi-mode vibration suppression of a pinned, quadratic plate. An aircraft fuselage panel with a window cutout is investigated as test object for complex, curved geometries.

This content is only available via PDF.
You do not currently have access to this content.