This paper describes the vibration analysis and optimization of a base structure and a beam-like attached damper sub-system that couple in vibration through distributed-contact friction damping. The objective is to tune the characteristics of the damper sub-system to maximize energy dissipation, and therefore to control vibration of the base structure. Applications of the concept to noise and vibration phenomena associated with automotive disk brake rotors are discussed. Per-cycle energy dissipation is examined as a function of damper preload for two classes of sub-systems: dampers that are split rings, and dampers that are continuous rings. End-effects and the manner in which energy dissipation is distributed spatially along the damper are also discussed. Of potential technological application, for a given excitation frequency, the damper sub-system’s design can be optimized to reduce vibration of the base structure.

This content is only available via PDF.
You do not currently have access to this content.