After analyzing the inefficiency of the conventional Cell Mapping Methods in global analysis for high-dimensional nonlinear systems, several principles should be followed for these methods’ implementations in high-dimensional systems are proposed in this paper. Those are: appropriate selection of investigating plane, reduction of data size, and projection of attractors to the investigating plane. According to these, the idea of dynamic array is introduced to the method of Point Mapping Under Cell Reference (PMUCR) to improve computing efficiency. The comparison of the CPU time between the applications of this modified method to a 2-dimensional system and to a 4-dimensional one is carried out, and the results confirm this modified method can be utilized to analyze high-dimensional systems effectively. Finally, as examples, the periodic and chaotic motions of a coupled Duffing system are investigated through this method and some diagrams of global characteristics are presented.

This content is only available via PDF.
You do not currently have access to this content.