This study presents the free vibration analysis of circular plate having variable thickness made of functionally-graded material. The boundary conditions of the plate is either simply supported or clamped. Dynamic equations were obtained using energy method based on Love-Kichhoff hypothesis and Sander’s non-linear strain-displacement relation for thin plates. The finite element method is used to determine the natural frequencies. The results obtained show good agreement with known analytical data. The effects of thickness variation and Poisson’s ratio are investigated by calculating the natural frequencies. These effects are found not to be the same for simply supported and clamped plates.

This content is only available via PDF.
You do not currently have access to this content.