Nonlinear dynamics in the fundamental interaction between a two-level atom with recoil and a quantized radiation field in a high-quality microcavity is studied. We consider the strongly coupled atom-field system as a quantum-classical hybrid with dynamically coupled quantum and classical egrees of freedom. We show that, even in the absence of any other interaction with environment, the coupling of quantum and classical degrees of freedom provides the emergence of classical dynamical chaos from quantum electrodynamics. It manifest itself in the atomic external degree of freedom as a random walking of an atom inside a cavity with a prominent fractal-like behavior and in the quantum atom-filed degrees of freedom as a sensitive dependence of atomic inversion on small variations in initial conditions. It is shown that dependences of variance of quantum entanglement and of the maximum Lyapunov exponent on the detuning of the atom-field resonance correlate strongly. This result provides a quantum-classical correspondence in a closed physical system.

This content is only available via PDF.
You do not currently have access to this content.