Energy pumping in nonlinear mechanical oscillators has been discovered and studied in mechanical systems consisting of weakly coupled, linear and nonlinear components [1–3]. In this paper this phenomenon is further studied and numerically verified on an 11 degree of freedom system. It also presents a technique to create low dimensional models for energy pumping systems using the Karhunen-Loeve (K-L) decomposition method. It is shown that energy pumping can be identified from the dominant K-L modes. The low dimensional models are used to reconstruct the system responses. From the comparisons between the reconstructed and simulated response, we can see that the K-L mode-based low-dimensional model can represent the system responses; it can be used for monitoring, diagnosis and control purposes.

This content is only available via PDF.
You do not currently have access to this content.