Mode localizations in a weakly coupled two-span rotor system are theoretically and experimentally discussed. One rotor has a slight unbalance and the other one is well-assembled. First, the equations governing the whirling motions of the coupled rotors are expressed due to nonlinearity in each span and the weakness of the coupling. The averaged equations are obtained by the method of multiple scales and it is shown that the nonlinear normal modes are bifurcated from the linear normal modes. It results from this bifurcation that the number of nonlinear normal modes exceeds the equivalent degree of freedom of the two-span rotor system, i.e., 2-degree under the assumption that the trajectory of the whirling motion is circle. Also, it is theoretically clarified that whirling motion caused by the unbalance in the rotor is localized in the rotor with unbalance or in one without unbalance depending on the rotational speed. Furthermore, these mode localizations are experimentally confirmed.

This content is only available via PDF.
You do not currently have access to this content.