Fixtures accurately locate and secure a part during machining operations such that the part can be manufactured to design specifications. To reduce design costs associated with fixturing, various computer-aided fixture design (CAFD) methods have been developed through the years to assist the fixture designer. One approach is to use a case-based reasoning (CBR) method where relevant design experience is retrieved from a design library, and adapted to provide a new fixture design solution. Indexing design cases is a critical issue in any CBR approach, and CBR systems can suffer from an inability to distinguish between cases if indexing is inadequate. This paper presents a CAFD methodology, entitled CAFixD, that adopts a rigorous approach to defining indexing attributes in which axiomatic design functional requirement decomposition is adopted. Thus, a design requirement is decomposed in terms of functional requirements, physical solutions are retrieved and adapted for each individual requirement, and the design is then re-constituted to form a complete fixture design. Furthermore, adaptability is used as the basis by which designs are retrieved in place of the normal attribute similarity approach, which can sometimes return a case that is difficult or impossible to fix. This paper presents the CAFixD framework and operation, and discusses in detail the indexing mechanisms used.

This content is only available via PDF.
You do not currently have access to this content.