An innovative flexure design concept is developed that involves the use of composite materials with bonded piezoelectric actuators to create a “smart actuator” for nanometer scale positioning both in and out of plane. The utilization of smart actuators/sensors will have many benefits over current positioning stages including the utilization of advantageous composite properties, the increase of the resonant frequency of the stage system, the simplification of the manufacturing procedure, and possible increased range of motion. Enhanced mechanical response is made possible by using composite materials and proper layer orientation. This work is a “proof of concept” design for the ultra-precision smart actuator. Analytical and numerical models were developed to determine the response of the composite material and piezoelectric actuator system. Experimentation was performed on the system to verify the results of the mathematical and numerical models. Good correlation between mathematical, numerical, and experimental data was seen in axial and bending modes of operation. Results from the parametric and experimental verification studies are presented to illustrate the efficacy of the design concept.

This content is only available via PDF.
You do not currently have access to this content.