A novel 5-UPS/PRPU 5-axis PMT (Parallel Machine Tool) is studied. The stationary platform is connected with the moving platform by the same five UPS actuated limbs and a PRPU passive constraining limb. Three translational DOF (degrees of freedom) and two rotational DOF can be achieved. by using kinematic screw theory and D-H parameter method, the kinematic forward and inverse solutions of the PRPU constraining limb are deduced. The rotational constraint along the vertical axis of the moving platform acted by the PRPU limb is confirmed. Moreover, the configuration of the moving platform can be acquired online by installing sensors on the joints of the constraining limb. The kinematic inverse solution equation and jacobian matrix for this 5-axis PMT are presented. Finally the workspace and the dexterity of the PMT are analyzed. Theoretical analysis is proved by the actual operation of the prototype of the 5-UPS/PRPU 5-axis PMT in our laboratory.

This content is only available via PDF.
You do not currently have access to this content.