This paper presents a method for the Jacobian derivation of 5-DOF 3R2T PMs (parallel mechanisms), where 3R denotes three rotational DOFs (degrees of freedom) and 2T denotes two translational DOFs. First the mobility analysis of such kind of parallel mechanisms is reviewed briefly. The Jacobian matrix of the single limb kinematic chain is obtained via screw theory, which is a 6 × 5 matrix. Then it is shown that the mobility analysis of such kind of PM is important when simplifying the 6 × 5 matrix into a 5 × 5 Jacobian matrix. After obtaining the 5 × 5 Jacobian matrix for each limb, a 5 × 5 Jacobian matrix for the whole mechanism can be established.

This content is only available via PDF.
You do not currently have access to this content.