This paper shows how the instantaneous invariants for time-independent motions can be obtained from time-dependent motions. Relationships are derived between those parameters that define a time-dependent motion and the parameters that define its geometrically equivalent time-independent motion. The time-independent formulations have the advantage of being simpler than the time dependent ones, and thereby lead to more elegant and parsimonious descriptions of motions properties. The paper starts with a review of the choice of canonical coordinate systems and instantaneous invariants for time-based spherical and spatial motions. It then shows how to convert these descriptions to time-independent motions with the same geometric trajectories. New equations are given that allow the computation of the geometric invariants from time-based invariants. The paper concludes with a detailed example of the third-order motion analysis of the trajectories of an open, spatial R-R chain.

This content is only available via PDF.
You do not currently have access to this content.