A time-accurate explicit finite element code is used to predict the natural frequencies of a typical class of flexible multibody systems — automotive accessory belt-drives. The system considered consists of a belt, two pulleys, and a tensioner. Two techniques are used to find the system natural frequencies: (a) applying a sharp impulse to the system and extracting the system natural frequencies from the resulting displacement/strain time-histories via an FFT; and (b) applying a harmonic force to the system and sweeping through a frequency range, while at the same time, monitoring for large system response. In the present paper a comparison between these two techniques is presented for a typical accessory drive. Also, recommendations are offered on how to best use each technique to efficiently extract the system’s natural frequencies.

This content is only available via PDF.
You do not currently have access to this content.