In this paper an approximate kinematic synthesis method is presented with application to rigid-body guidance in planar multibody systems. The problem of finding the optimal dimensions in linkages with rigid-body guidance constraints has been widely studied. Many techniques have been developed and applied to numerous kinematic chains. However, some problems remain without appropriate solution, such as a large number of required poses or low computational cost. The proposed method uses exact-gradient determination to search for an optimal solution. The modelling of the mechanism uses fully Cartesian coordinates and is formulated by means of algebraic constraint equations. Furthermore, the formulation allows the use of a large number of prescribed poses giving high accuracy in the definition of synthesis conditions. Examples are included to illustrate the new approach to some synthesis specifications.

This content is only available via PDF.
You do not currently have access to this content.