We present a new kinematic calibration algorithm for redundantly actuated parallel mechanisms. The calibration algorithm for a non-redundant case does not apply for a redundantly actuated parallel mechanism, because the angle error of the actuating joint varies with position and the geometrical constraint fails to be consistent. Such change of joint angle error comes from constraint torque variation with each kinematic pose. To calibrate a redundant parallel mechanism, one therefore has to consider constraint torque equilibrium and the relationship of constraint torque to torsional deflection, in addition to geometric constraint. In this paper, we develop the calibration algorithm for a redundantly actuated parallel mechanism using these three relationships, and formulate cost functions for an optimization algorithm. As a case study, we executed the calibration of a 2-degree of freedom (DOF) parallel mechanism with three actuators using the developed algorithm. Coordinate values of tool plate were measured using a laser ball bar and the actual kinematic parameters were identified with a new cost function of the optimization algorithm. Experimental results showed that the accuracy of the tool plate improved by 82% after kinematic calibration in a redundant actuation case.

This content is only available via PDF.
You do not currently have access to this content.